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In this Rapid Communication we derive a simple dynamical model for the unwinding transition of a
cholesteric liquid crystal. Our model describes not only the equilibrium but also the nonequilibrium
features of the transition. In particular, our model is in qualitative agreement with the experimental ob-
servations of systems containing rotating spiral waves, all of the same handedness.

PACS number(s): 64.70.Md, 47.20.Ky, 05.45.+b

The spontaneous creation of spiral waves has been
commonly observed in nonequilibrium systems in fields,
such as biology [1], chemistry [2], hydrodynamics [3],
and nonlinear optics [4]. In all such systems, spiral waves
appear in pairs with opposite topological charge and op-
posite handedness (sense of rotation). Now, beside those
results, recent experimental observations [5] dealing with
the unwinding transition of a cholesteric liquid crystal
[6—-9] report the spontaneous nucleation of rotating spiral
waves with only one handedness. To our knowledge,
those time-dependent structures have not yet been inves-
tigated theoretically. The aim of this Rapid Communica-
tion is then to derive a simple dynamical bidimensional
model for the unwinding transition of a cholesteric liquid
crystal which explains the uniqueness of the spiral hand-
edness.

In the unwinding transition problem, a large-pitch
cholesteric liquid crystal is sandwiched between two hor-
izontal parallel glass plates, with homeotropic anchoring
(i.e., the molecules near the surface are perpendicular to
the plates). When the distance d between the two plates
is small enough, the boundary conditions force all the
molecules throughout the sample to be perpendicular to
the plates. On the contrary, above a critical distance d,,
cholesteric winding takes place. In such a system, an ac
electric field is usually applied perpendicularly to the hor-
izontal glass plates, in order to modify the molecular
orientation through the dielectric anisotropy of the liquid
crystal. According to the literature of the subject, two
distinct kinds of dynamical behavior have been observed,
depending on the frequency of the applied electric field.
When a high-frequency electric field is used to avoid
charge injection, the system is described by a Lyapunov
function (the dynamics is ruled by a minimization princi-
ple). In that case, the thermodynamical phase diagram
displays a homeotropic nematic phase, isolated fingers,
fingerprint patterns [6], spherulitic bubble domains [7,8],
translationally invariant cholesteric configuration (TIC),
and a modulated TIC phase [9]. In contrast, when a dc
electric field is applied, the system is out of equilibrium
and displays steady time-dependent structures. In that
case the literature reports the formation of Archimedian
spirals [5], rotating around their core with a single given
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handedness.

Let us now develop a two-dimensional (2D) model of
the unwinding cholesteric transition, able to describe
both the various equilibrium and out-of-equilibrium
liquid-crystal textures. However, we are not interested in
a microscopic exact description of the complex dynami-
cal physical mechanism involved [10], but rather in a
Landau-de Gennes approach, which only takes into ac-
count the symmetries of the problem.

We introduce the following convenient notations:

Q=n,(n,+in,), dy=0x+idy,
and
Q=n,(n,—in,), 3Y=03x—idy ,

in which n,, n,, and n, are the components of the direc-
tor n. With our definitions, the plates are perpendicular
to the z axis and the homeotropic state corresponds to
n,=n,=0 and n,=1. Close to the nematic-cholesteric
transition the director is well described by
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where p is the cholesteric pitch, a is the maximum az-
imuth deviation from the homeotropic situation, and
where a and 6 slowly depend on x, y, and ¢ [11]. As
shown in Refs. [11,12], there exists a range of parameters
for which the transition is second order or weakly first
order. In such a parameter region, a is small and the
director may be expressed as
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with A4 (x,y,t)=ae'?,

where A is the order parameter of the transition, invari-
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ant by the transformation n——n. For the thermo-
dynamic transition, the equation we look for must be as-
sociated with a Lyapunov function ¥ [13] and therefore
can be expressed as

94 __ %
at 84

where F is real and generalizes the two-dimensional
liquid-crystal free-energy density. Now, close to the tran-
sition, the order parameter A and its spatial derivatives
are small and, consequently, we can search for an expres-
sion of ¥ as a Taylor expansion in A,axA,axxA,. ..o At
each order in A4, we will limit ourselves to spatial deriva-
tives up to second order, as this is already the case in

) (1
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Frank’s expression of the free-energy density [14]. The
invariance of the system with respect to rotation around
the z axis and the rotation of 180° around the x axis are,
respectively, expressed as

F—F, aX—>e"f’a

p A—e4,

and

F—F, 9y, A—4.

Combinations of those two symmetries, together with the
fact that ¥ is real, restrict the possible second-order
terms to

= 2 2 2 (424 42 A4+ 4 A 4
Fo=Fl AP AP AP AL+ A, (A A+ A A, (A A+ A, A)

where 4, (A4 )?) stands for the partial derivative of 4 with respect to ¥ (¥). Performing the same kind of analysis to

third order leads to
Fy=F A A+ 474, | A4+ 4))

and to the nine following terms:

| AL T4, 121 41714, 1% 1 4 P42+ 4%),

Fo=Fu=

37 >3
AA, + A4 Ay

for order 4. In ¥, one could be tempted to neglect the
eight terms involving spatial derivatives, which are a
priori slowly varying in space, and to retain only | 4 |* in
the free energy. Unfortunately it is easy to prove analyti-
cally and numerically that the corresponding free-energy
density does not have a lower bound, and that at least one
of the nonhomogeneous fourth-order terms is needed for
the boundedness. There is no deep reason to select one of
the terms rather than another. However, for the sake of
simplicity, we will limit ourselves, in what follows, to the
three terms |A4|% |43 A,1%141*| 4,1*. Then the dy-
namics associated with Eq. (1) reads, after some simple
scaling transformations on space, time, and the modulus
of A,
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In this equation, u is the growth rate of the instability
and is roughly proportional to d —d_, 8 is related to the
anisotropy of the liquid crystal (relative differences be-
tween the elastic constants [14], 7 is proportional to the
chirality, and finally & is needed for the boundedness of
the free energy. This equation is of the Ginzburg-Landau
type. However, it admits two new terms. The first one is
Zxx and, as shown in Ref. [15], it conveys the anisotropy
of the liquid crystal. The second term, AA)?—AAX,
which is not invariant by the mirror symmetry
(x,y,z)—(x, —y,z), expresses the intrinsic chirality of the
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[
cholesteric.

In order to compare our model with the rigorous phase
diagram of Ref. [16], we now perform a simple analysis of
Eq. (2). A,=0is a trivial solution of Eq. (2), correspond-
ing to the homeotropic phase. It is linearly stable for
negative values of p. For positive values of u, there exists
a nonzero homogeneous solution, 4y =iV u, correspond-
ing to the TIC solution with 6=1/2 [10] whose critical
eigenvalue is given by

o(k)=—(1—8+u—29")k2—(1+8+pd)k?+0(k*),

where k=(k,,k,) is the Fourier wave vector. Therefore,
for 7?>(1—8+ut)/2, the TIC is unstable with respect
to spatial perturbations. The critical wave vector corre-
sponding to the highest instability rate is then propor-
tional to the chiral coefficient 7. Using a fourth-order
Runge-Kutta scheme, with spatial derivatives computed
with either finite-difference algorithms or Fourier trans-
forms, we have numerically checked that, in such a case,
this bifurcation gives rise to a periodic pattern,
identifiable with the classical modulated TIC. Further-
more, in the parameter range where the homeotropic
state is stable (u <0), we numerically observed isolated
subcritical localized structures, which can be identified as
the cholesteric finger structures. These fingers are ob-
tained for quite high values of the chiral coefficient  and
look like those reported by the previous experimental and
analytical works [Fig. 1(a)]. Especially, the two ends of
the finger are not identical, one (the abnormal tip) being
sharper than the other (the normal one). Furthermore,
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¢ d FIG. 2. Thermodynamical phase diagram of Eq. (2) vs (&, 7).
We have used 8= —0.3 and {=1. The dashed line is a numeri-

FIG. 1. Numerical simulation of Eq. (3) showing | 4| vs x
and y. The contrast has been enhanced, the white correspond-
ing to | A|=0 and the black to the nonvanishing value of the
modulus. We have used periodic boundary conditions, and the
size of the square box is 102.4. Initial values have been chosen
to fit at best the isolated finger structure. u=—0.25, §=—0.3,
n=2.7, {=1, and v;=v,=0. (a) displays the equilibrium finger
solution (v,=0) after some time evolution. The finger length is
twice the initial one. (b), (c), and (d) are successive pictures of
the temporal evolution obtained with v,=0.1. For (e), which
corresponds to the long-time behavior, random initial values
have been used.

fingers with two normal rounded tips but with a +1 dis-
clination in their bulk are also observed [8]. The connec-
tion topological rules, with a repulsion between normal
ends, the collapse of two ends of opposite sign, and the
T-like sidebranching [16] have been numerically ob-
served. From a qualitative point of view, these observa-
tions are related to the presence of the chiral term 7
(AA)?_ ZAX) and not to the fourth-order terms which
have been chosen in order to saturate the instability.
These numerical and analytical results as a whole are
summarized in Fig. 2. Remarkably, the phase diagram
does display two triple points, as in the experimental and
theoretical thermodynamic phase diagrams obtained in
Ref. [16]. We believe that if the omitted fourth-order
terms were taken into consideration, the phase diagram
in the neighborhood of =0 would only be modified in a
quantitative way, but not in a qualitative one. Now we
tackle the nonequilibrium dynamics and the formation of
horizontal birefringent spiral structures in the cholesteric
liquid crystal, induced by a dc or ac vertical electric field.
In contrast to the microscopic interpretation of Hinov
and Kukleva [5], for which the spiral patterns could be
explained by possible gradient flexoelectric generation of
point singularities, we adopt here a different point of
view. Indeed, a small vertical electric field can be
modeled by supplementary terms in the dynamical equa-
tion (2). These new terms can be derived using the previ-

cal result.

ous symmetry arguments, except that the turnover sym-
metry transformation is now modified in the following
way:

F—%, 9,3, A—4, E,~—E,.

The change of sign of E, in the previous expression is
fundamental. It leads, at first order in 4 to a
complexification of the real coefficients, and induces a dy-
namics that cannot be described by a Lyapunov function.
The resulting pertubated equation is then

04

rya [u+ivyE,cos(wt)] A4 +[1 -i—ilezcos(cot)]A)O7

—[8+iv,E cos(wt) Ay, +1(AA,—AA))
— 2 2 q
|APA+E( AP A ;+ A4, 45), 3)

where v, v, v, are real coefficients and o is the electric-
field frequency. Note that corrections to the real
coeflicients will be neglected here since they are at least of
second order in E,. Also we will not take into account
the corrections to the nonlinear terms because of the
smallness of 4.

Numerical simulations of Eq. (3) with =0 and arbi-
trary initial conditions reveal the formation of Ar-
chimedian spiral waves with a single given handedness
[Fig. 1(e)]. The sense of rotation can be easily reversed by
either changing the sign of the chirality (%) or the sign of
the electric field (vE). As in our preliminary experimen-
tal results [17] or in Ref. [5], we observed that each spiral
consists of the rolling up of a drifting finger (Fig. 3).

The formation of one spiral can be numerically investi-
gated in the following way. Starting from an isolated
finger, and increasing v, up to a weak nonvanishing
value, we observe a drift of the central part of the finger
perpendicularly to its local axis. As in excitable media
[2], the velocity of the drift is nonuniform all along the
finger [Fig. 1(b)]. The velocity being the slowest at the
rounded end, the finger rolls up of around its normal tip
and forms a spiral [Figs. 1(c) and 1(d)]. In contrast, the
abnormal end, which is the fastest part of the finger,
seems to be the center of a sidebranching mechanism.

We have numerically checked that this perpendicular
displacement of the finger is due to the v; coefficients, and
its direction is imposed by the sign of the chiral
coefficient. This mechanism is robust and is found to per-
sist in one space dimension. Indeed, in the parameter re-
gion where the isolated fingers are stable, we do numeri-
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FIG. 3. Experimental observation at the ambient tempera-
ture of an MBBA-CB15 mixture with a small amount of chiral
material (Ae>0). The sample is a few micrometers thick and
the picture is one millimeter wide. A 1.5-dc voltage is applied
between the slides.

cally observe one-dimensional localized structures which
are identified as the transverse structure of a finger (Fig.
4). As soon as a constant electric field is applied, this
transverse structure drifts. Now the effect of the electric
field can be investigated through a classical perturbation
analysis. Let us look for a solution of Eq. (3) of the form

A(x,t)=Ay(x +X(T))+O(E}),

where x is perpendicular to the finger axis, 4,(x) is the
isolated finger solution of the unperturbated equation
(E,=0), and X (¢) is slowly varying in time. Then, an
easy but tedious computation shows that the previous de-
velopment is a solution of Eq. (3) up to order 1, provided
that
%=Kcos(mt)+O(Ezl) ,
where « is a constant that depends on v,, v;, and on the
chirality sign. This equation describes the oscillation of
the finger perpendicularly to its axis, with an amplitude
proportional to k /w. Therefore, high electric frequencies
lead to stationary isolated fingers, while a dc electric field
leads to a constant drift.

Now some remarks are in order. First, besides this
perpendicular drift, experimental observations report a
displacement of the finger along its axis. This effect,
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FIG. 4. Numerical simulation of the restriction of Eq. (3) to
one space dimension. p=-—0.1, 7=2.0, (=1, and

vo=v;=v,=0. (a) displays | 4| vs x and (b) is the parametric
plot of A vs x.

which has been called reptation [18], cannot be investi-
gated in one space dimension; however, our two-
dimensional numerical simulations show such an effect.
Second, not all the rotating spirals observed in liquid
crystal may be modeled by our equation. In particular,
the spirals observed in Refs. [19] and [20], involving high
birefringent optical patterns, are not covered by our
analysis. In that case the deviation of the director from
the homeotropic case is so large that our assumption (A
is small) is no longer valid.

In conclusion, we have been able, using symmetry ar-
guments, to write a Landau—de Gennes model of the
unwinding transition of a cholesteric liquid crystal, in
quite good qualitative agreement with both the experi-
mental and theoretical thermodynamic phase diagrams.
Our model is bidimensional, dynamical, and, though less
precise than the usual 3D free-energy computations, able
to explain the formation of spirals with a single given
handedness.
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